# Nilpotent

In mathematics, an element x of a ring R is called nilpotent if there exists some positive integer n such that xn = 0.

 Contents

## Examples

• This definition can be applied in particular to square matrices. The matrix
[itex]A = \begin{pmatrix}

0&1&0\\ 0&0&1\\ 0&0&0\end{pmatrix} [itex]

is nilpotent because A3 = 0.
• In the factor ring Z/9Z, the class of 3 is nilpotent because 32 is congruent to 0 modulo 9.
• Assume that two elements a,b in a (non-commutative) ring R satisfy ab=0. Then the element c=ba is nilpotent (if non-zero) as c2=(ba)2=b(ab)a=0. An example with matrices (for a,b):
[itex]A_1 = \begin{pmatrix}

0&1\\ 0&1 \end{pmatrix}, \;\; A_2 =\begin{pmatrix} 0&1\\ 0&0 \end{pmatrix} \ . [itex]

Here [itex] A_1A_2=0,\; A_2A_1=A_2 [itex].

## Properties

No nilpotent element can be a unit (except in the trivial ring {0} which has only a single element 0 = 1). All non-zero nilpotent elements are zero divisors.

An n-by-n matrix A with entries from a field is nilpotent if and only if its characteristic polynomial is Tn, which is the case if and only if An = 0.

The nilpotent elements from a commutative ring form an ideal; this is a consequence of the binomial theorem. This ideal is the nilradical of the ring. Every nilpotent element in a commutative ring is contained in every prime ideal of that ring, and in fact the intersection of all these prime ideals is equal to the nilradical.

If x is nilpotent, then 1 − x is a unit, because xn = 0 entails

(1 − x) (1 + x + x2 + ... + xn−1) = 1 − xn = 1.

## Nilpotency in physics

An operator [itex]Q[itex] that satisfies [itex]Q^2=0[itex] is nilpotent. The BRST charge is an important example in physics.

As linear operators form an associative algebra and thus a ring, this is a special case of the initial definition. More generally, in view of the above definitions, an operator Q is nilpotent if there is nN such that Qn=o (the zero function). Thus, a linear map is nilpotent iff it has a nilpotent matrix in some basis. Another example for this is the exterior derivative (again with n=2). Both are linked, also through supersymmetry and Morse theory, as shown by Edward Witten in a celebrated article.

## References

• E Witten, Supersymmetry and Morse theory. J.Diff.Geom.17:661-692,1982.
• A. Rogers, The topological particle and Morse theory, Class. Quantum Grav. 17:3703-3714,2000 Template:Doi.de:Nilpotenz
##### Navigation

Academic Kids Menu

• Art and Cultures
• Art (http://www.academickids.com/encyclopedia/index.php/Art)
• Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
• Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
• Music (http://www.academickids.com/encyclopedia/index.php/Music)
• Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
• Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
• Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
• Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
• Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
• Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
• Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
• Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
• History (http://www.academickids.com/encyclopedia/index.php/History)
• Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
• Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
• Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
• Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
• Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
• Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
• United States (http://www.academickids.com/encyclopedia/index.php/United_States)
• Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
• World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
• Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
• Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
• Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
• Science (http://www.academickids.com/encyclopedia/index.php/Science)
• Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
• Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
• Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
• Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
• Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
• Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
• Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
• Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
• Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
• Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
• Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
• Government (http://www.academickids.com/encyclopedia/index.php/Government)
• Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
• Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
• Space and Astronomy
• Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
• Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
• Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
• Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
• Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
• US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

• Home Page (http://academickids.com/encyclopedia/index.php)
• Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

• Clip Art (http://classroomclipart.com)