Cofinality

From Academic Kids

In mathematics, especially in order theory, a subset B of a partially ordered set A is cofinal if for every a in A there is a b in B such that ab. The cofinality of A is the least cardinality of a cofinal subset. Note that the cofinality always exists, since the cardinal numbers are well-ordered. Cofinality is only an interesting concept if there is no greatest element in A since otherwise the cofinality is 1.

Cofinality can also be similarly defined for a directed set and it is used to generalize the notion of a subsequence in a net.

If A admits a totally ordered cofinal subset B, then we can find a subset of B which is well-ordered and cofinal in B (and hence in A). Moreover, any cofinal subset of B whose cardinality is equal to the cofinality of B is well-ordered and order isomorphic to its own cardinality.

For any infinite well-orderable cardinal number κ, an equivalent and useful definition is cf(κ) = the cardinality of the smallest collection of sets of strictly smaller cardinals such that their sum is κ; more precisely

<math>\mathrm{cf}(\kappa) = \inf \{ \mathrm{card}(I)\ |\ \kappa = \sum_{i \in I} \lambda_i\ \mathrm{and}\ (\forall i)(\lambda_i < \kappa)\}<math>

That the set above is nonempty comes from the fact that

<math>\kappa = \bigcup_{i \in \kappa} \{i\}<math>

i.e. the disjoint union of κ singleton sets. This implies immediately that cf(κ) ≤ κ. A cardinal κ such that cf(κ) = κ is called regular; otherwise it is called singular.

The fact that a countable union of countable sets is countable implies that the cofinality of the cardinality of the continuum must be uncountable, and hence we have

<math>2^{\aleph_0}\neq\aleph_\omega,<math>

the ordinal number ω being the first infinite ordinal; this is because

<math> \aleph_\omega = \bigcup_{n < \omega} \aleph_n <math>.

so that the cofinality of <math>\aleph_\omega<math> is ω. Many more interesting results relating cardinal numbers and cofinality follow from a useful theorem of König (e.g., κ < κcf(κ) and κ < cf(2κ) for any infinite cardinal κ).

Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools