Connection (mathematics)

From Academic Kids

In differential geometry, a connection (also connexion) or covariant derivative is a way of specifying a derivative of a vector field along another vector field on a manifold. That is an application to tangent bundles; there are more general connections, used in differential geometry and other fields of mathematics to formulate intrinsic differential equations . Connection may refer to a connection on any vector bundle, or also a connection on a principal bundle.

Connections give rise to parallel transport along a curve on a manifold. A connection also leads to invariants of curvature (see also curvature tensor and curvature form), and the so-called torsion.

General concept

The general concept can be summarized as follows: given a fiber bundle <math>\eta:E\to B<math> the tangent space at any point of E has canonical "vertical" subspace, the subspace tangent to the fiber. The connection fixes a choice of "horizontal" subspace at each point of E so that the tangent space of E is a direct sum of vertical and horizontal subspaces. Usually more requirements are imposed on the choice of "horizontal" subspaces, but they depend on the type of the bundle.

Given a <math>B'\to B<math> the induced bundle has an induced connection. If <math>B'=I<math> is a segment then connection on B gives a trivialization on the induced bundle over I, i.e. a choice of smooth one-parameter family of isomorphisms between the fibers over I. This family is called parallel displacement along the curve <math>I\to B <math> and it gives an equivalent description of connection (which in case of Levi-Civita connection on a Riemannian manifold is called parallel transport).

There are many ways to describe connection, in one particular approach, a connection can be locally described as a matrix of 1-forms which is the multiplant of the difference between the covariant derivative and the ordinary partial derivative in a coordinate chart. That is, partial derivatives are not an intrinsic notion on a manifold: a connection 'fixes up' the concept and permits discussion in geometric terms.

Possible approaches

There are quite a number of possible approaches to the connection concept. They include the following:

The connections referred to above are linear or affine connections. There is also a concept of projective connection; the most commonly-met form of this is the Schwarzian derivative in complex analysis.

See also: Gauss-Manin connectiones:Conexión (Matemáticas)


Academic Kids Menu

  • Art and Cultures
    • Art (
    • Architecture (
    • Cultures (
    • Music (
    • Musical Instruments (
  • Biographies (
  • Clipart (
  • Geography (
    • Countries of the World (
    • Maps (
    • Flags (
    • Continents (
  • History (
    • Ancient Civilizations (
    • Industrial Revolution (
    • Middle Ages (
    • Prehistory (
    • Renaissance (
    • Timelines (
    • United States (
    • Wars (
    • World History (
  • Human Body (
  • Mathematics (
  • Reference (
  • Science (
    • Animals (
    • Aviation (
    • Dinosaurs (
    • Earth (
    • Inventions (
    • Physical Science (
    • Plants (
    • Scientists (
  • Social Studies (
    • Anthropology (
    • Economics (
    • Government (
    • Religion (
    • Holidays (
  • Space and Astronomy
    • Solar System (
    • Planets (
  • Sports (
  • Timelines (
  • Weather (
  • US States (


  • Home Page (
  • Contact Us (

  • Clip Art (
Personal tools