Monoidal category

From Academic Kids

In mathematics, a monoidal category (or tensor category) is a category <math>\mathbb C<math> equipped with a binary 'tensor' functor <math>\otimes: \mathbb C\times\mathbb C\to\mathbb C<math> and a unit object <math>I<math>. The tensor operation must be associative in the sense that there is a natural isomorphism <math>\alpha<math> with components <math>\alpha_{A,B,C}: (A\otimes B)\otimes C \to A\otimes(B\otimes C)<math>; and <math>I<math> must be a left and right identity in the sense that there are natural isomorphisms <math>\lambda<math> and <math>\rho<math> with components <math>\lambda_A: I\otimes A\to A<math> and <math>\rho_A: A\otimes I\to A<math> respectively.

These natural transformations are subject to certain coherence conditions. All the necessary conditions are implied by the following two: for all <math>A<math>, <math>B<math>, <math>C<math> and <math>D<math> in <math>\mathbb C<math>, the diagrams

Missing image
Monoidal-category-pentagon.png
Image:monoidal-category-pentagon.png

and Missing image
Monoidal-category-triangle.png
Image:monoidal-category-triangle.png

must commute. It follows from these two conditions that any such diagram commutes: this is Mac Lane's "coherence theorem".

  • A monoidal category may be regarded as a bicategory with one object.
  • Many monoidal categories have additional structure such as braiding or symmetry: the references describe this in detail.
  • There is a general notion of monoid object in a monoidal category, which generalizes the ordinary notion of monoid.
  • Monoidal categories are used to define models for linear logic.

Examples

Any category with standard categorical products and a terminal object is a monoidal category, with the categorical product as tensor product and the terminal object as identity. Also, any category with coproducts and an initial object is a monoidal category - with the coproduct as tensor product and the initial object as identity. (In both these cases, the structure is actually symmetric monoidal.) However, in many monoidal categories (such as K-Vect, given below) the tensor product is neither a categorical product nor a coproduct.

Examples of monoidal categories, illustrating the parallelism between the category of vector spaces over a field and the category of sets, are given below.

K-VectSet
Given a field (or commutative ring) K, the category K-Vect is a symmetric monoidal category with product ⊗ and identity K. The category Set is a symmetric monoidal category with product × and identity {*}.
A unital associative algebra is an object of K-Vect together with morphisms <math>\nabla:A\otimes A\rightarrow A<math> and <math>\eta: \mathbf{K} \rightarrow A<math> satisfying
Missing image
Algebra.png
commutative diagrams

.
A monoid is an object M together with morphisms <math>\circ: M \times M \rightarrow M<math> and <math>1: \{*\} \rightarrow M<math> satisfying
Missing image
Monoid.png
commutative diagrams

.
A coalgebra is an object C with morphisms <math>\Delta: C \rightarrow C \otimes C<math> and <math>\epsilon:C\rightarrow \mathbf{K}<math> satisfying
Missing image
Coalg.png
commutative diagrams

.
Any object of Set, S has two unique morphisms <math>\Delta: S \rightarrow S \times S<math> and <math>\epsilon: S \rightarrow \{*\}<math> satisfying
Missing image
Diag.png
commutative diagram

.
In particular, ε is unique because {*} is a terminal object.

References

  • Joyal, André; Street, Ross (1993). "Braided Tensor Categories". Advances in Mathematics 102, 20–78.
  • Mac Lane, Saunders (1997), Categories for the Working Mathematician (2nd ed.). New York: Springer-Verlag.
Navigation

Academic Kids Menu

  • Art and Cultures
    • Art (http://www.academickids.com/encyclopedia/index.php/Art)
    • Architecture (http://www.academickids.com/encyclopedia/index.php/Architecture)
    • Cultures (http://www.academickids.com/encyclopedia/index.php/Cultures)
    • Music (http://www.academickids.com/encyclopedia/index.php/Music)
    • Musical Instruments (http://academickids.com/encyclopedia/index.php/List_of_musical_instruments)
  • Biographies (http://www.academickids.com/encyclopedia/index.php/Biographies)
  • Clipart (http://www.academickids.com/encyclopedia/index.php/Clipart)
  • Geography (http://www.academickids.com/encyclopedia/index.php/Geography)
    • Countries of the World (http://www.academickids.com/encyclopedia/index.php/Countries)
    • Maps (http://www.academickids.com/encyclopedia/index.php/Maps)
    • Flags (http://www.academickids.com/encyclopedia/index.php/Flags)
    • Continents (http://www.academickids.com/encyclopedia/index.php/Continents)
  • History (http://www.academickids.com/encyclopedia/index.php/History)
    • Ancient Civilizations (http://www.academickids.com/encyclopedia/index.php/Ancient_Civilizations)
    • Industrial Revolution (http://www.academickids.com/encyclopedia/index.php/Industrial_Revolution)
    • Middle Ages (http://www.academickids.com/encyclopedia/index.php/Middle_Ages)
    • Prehistory (http://www.academickids.com/encyclopedia/index.php/Prehistory)
    • Renaissance (http://www.academickids.com/encyclopedia/index.php/Renaissance)
    • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
    • United States (http://www.academickids.com/encyclopedia/index.php/United_States)
    • Wars (http://www.academickids.com/encyclopedia/index.php/Wars)
    • World History (http://www.academickids.com/encyclopedia/index.php/History_of_the_world)
  • Human Body (http://www.academickids.com/encyclopedia/index.php/Human_Body)
  • Mathematics (http://www.academickids.com/encyclopedia/index.php/Mathematics)
  • Reference (http://www.academickids.com/encyclopedia/index.php/Reference)
  • Science (http://www.academickids.com/encyclopedia/index.php/Science)
    • Animals (http://www.academickids.com/encyclopedia/index.php/Animals)
    • Aviation (http://www.academickids.com/encyclopedia/index.php/Aviation)
    • Dinosaurs (http://www.academickids.com/encyclopedia/index.php/Dinosaurs)
    • Earth (http://www.academickids.com/encyclopedia/index.php/Earth)
    • Inventions (http://www.academickids.com/encyclopedia/index.php/Inventions)
    • Physical Science (http://www.academickids.com/encyclopedia/index.php/Physical_Science)
    • Plants (http://www.academickids.com/encyclopedia/index.php/Plants)
    • Scientists (http://www.academickids.com/encyclopedia/index.php/Scientists)
  • Social Studies (http://www.academickids.com/encyclopedia/index.php/Social_Studies)
    • Anthropology (http://www.academickids.com/encyclopedia/index.php/Anthropology)
    • Economics (http://www.academickids.com/encyclopedia/index.php/Economics)
    • Government (http://www.academickids.com/encyclopedia/index.php/Government)
    • Religion (http://www.academickids.com/encyclopedia/index.php/Religion)
    • Holidays (http://www.academickids.com/encyclopedia/index.php/Holidays)
  • Space and Astronomy
    • Solar System (http://www.academickids.com/encyclopedia/index.php/Solar_System)
    • Planets (http://www.academickids.com/encyclopedia/index.php/Planets)
  • Sports (http://www.academickids.com/encyclopedia/index.php/Sports)
  • Timelines (http://www.academickids.com/encyclopedia/index.php/Timelines)
  • Weather (http://www.academickids.com/encyclopedia/index.php/Weather)
  • US States (http://www.academickids.com/encyclopedia/index.php/US_States)

Information

  • Home Page (http://academickids.com/encyclopedia/index.php)
  • Contact Us (http://www.academickids.com/encyclopedia/index.php/Contactus)

  • Clip Art (http://classroomclipart.com)
Toolbox
Personal tools